
Template:Highcharts

Documentation

This box includes basic usage information for this template. When calling the template,
this documentation will not appear. Functional template code should be placed outside
the dotted box.

Summary

Template
Description

This is a wrapper for highly awesome Highcharts graphing package. Two
reasons this package is great:

1. Produces beautiful graphs.
2. Based on JavaScript, SVG, and VML, so no plugins required and

no dependency on Excanvas for IE compatibility. Has proven
reliable on a wide variety of browsers.

3. Flexibility. You can make these charts do just about anything.
Although the Highcharts package is quite complex, this template is designed
to make it very easy to produce a wide variety of pleasing and useful graphs,
by applying a reasonably intelligent set of defaults and interpretation of a
small set of parameters. It also gives you access to (almost) the complete
functionality of Highcharts should you desire it, in convenient DekiScript
form.

Requirements

• Mindtouch 10.0.
• Highcharts is not free for commercial use, so please check

licensing terms. The fees are reasonable, help support worthy
software!

• You must have UNSAFECONTENT permission to install this
template!

• You must attach the highcharts.js file to the template page on
your wiki.

Documentation
URL

http://developer.mindtouch.com/App_Catalog/
Highcharts_-_a_wrapper_for_the_Highcharts_JavaScript_graphing_package

Discussion
URL http://forums.developer.mindtouch.com/showthread.php?p=43365

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

http://www.highcharts.com/
http://www.highcharts.com/license
https://firncore.trialanderror.tech/@api/deki/files/6586/=highcharts.js
https://firncore.trialanderror.tech/App_Catalog/Highcharts_-_a_wrapper_for_the_Highcharts_JavaScript_graphing_package
https://firncore.trialanderror.tech/App_Catalog/Highcharts_-_a_wrapper_for_the_Highcharts_JavaScript_graphing_package
http://forums.developer.mindtouch.com/showthread.php?p=43365

Version History

Place newest version at the top of the table.

Version Date Author Description

0.2.1b 15-Oct-2010 Neil
Weinstock

Fixed a major bug in the handling of the options
parameter.

0.2.0b 4-Oct-2010 Neil
Weinstock

Added labelFormatter, tooltipFormatter and
categories parameters. Upgrading to "beta".

0.1.0a 29-Sep-2010 Neil
Weinstock Basic functionality in place. Still evolving rapidly.

0.0.0a 28-Sep-2010 Neil
Weinstock Just getting started

Template Parameters

Name Type Default Description

CORE

The following arguments are all you need to do anything you
want. These can all be accessed either in an ordered list
(highcharts(type, size, data, options)) or via
an argument map (highcharts { type:"line", etc.
}).

type str? "line"

Default chart type. May be one of the
following (case insensitive):

• line
• spline
• area
• areaspline
• bar
• column
• scatter
• pie
• raw

For all options except "raw", this
template will generate a set of pleasing
defaults for that chart type. For "raw",
this template generate "renderTo" and

Name Type Default Description

"series" (from the data parameter), but
leave everything else up to you to
implement via the options parameter.
In other words, the template will pretty
much get out of the way and let you
feed Highcharts exactly the options
you want.

size list of two
numbers? [400,200] Width and height (in pixels) of chart

container

data list required
List of data series. Format of each data
series is chart type-dependent. (add
more here)

options map? {}

Additional options passed directly to
Highcharts. This options map is
intelligently (?) merged with the
options generated by the template
based on the previous parameters. So
you only need to specify options here
to either override or modify what the
template already provides.

Note that label and tooltip formatters
(if desired) must be specified using the
dedicated options given below.

labelFormatter str? nil

Code for a custom
plotOptions.series.dataLabels.formatter
function. This lets you specify the
exact contents of the labels shown on
the chart for each data point. This is
generally most useful for pie charts.
See the linked documentation for
explanation and examples.

Note that the template will
automatically generate the function
wrapper; you only need to specify the

http://www.highcharts.com/ref/#plotOptions-series-dataLabels

Name Type Default Description

contents of the formatter function (i.e.,
everything inside the {}).

tooltipFormatter str? nil

Code for a custom tooltip.formatter
function. This lets you specify the
exact contents of the tooltip shown
when you mouse-over a point on the
chart. This works will all chart types.

As with labelFormatter, you only
specify the contents of the function,
and the template will generate the
function wrapper.

debug bool? false

Show debug output. Specifically, this
will display the argument map that is
passed to Highcharts. This option
requires the PrettyPrint template, and
CollapseItem is recommended as well.

CONVENIENCE

The following arguments are provided as convenient shortcuts
for applying some common modifications to the graph. These
can be accessed only as named arguments in an argument map
(highcharts {}).

animation bool? false

Enable or disable animation when the
graph is first displayed.

Shorthand for
options.plotOptions.series.animation.

categories list? nil

Category names for the x axis. Size of
this list should be equal (at least) to the
size of the data series.

Shorthand for
options.xAxis.categories.

http://www.highcharts.com/ref/#tooltip
https://firncore.trialanderror.tech/App_Catalog/PrettyPrint_-_nicely_display_DekiScript_data_structures
https://firncore.trialanderror.tech/App_Catalog/CollapseItem%3A_general-purpose_show%2F%2Fhide_functionality
http://www.highcharts.com/ref/#plotOptions-series
http://www.highcharts.com/ref/#xAxis

Name Type Default Description

title str? nil

Title text for the chart. This will be
placed above the chart, centered. For
more precise control, feed the required
info directly to the options parameter.

Shorthand for options.title.text, plus
some additional interpretation.

stacking str? nil

Set to "normal" to stack based on
summing the series. Set to "percent" to
stack based on percentage of total.

Shorthand for
options.plotOptions.series.stacking.

Template Code

Unsafecontent Permission Check

// This code checks if the template is properly installed for unsafe content execution,
// and may be removed if this check is not desired. If you leave this here, add your new code
// in a new DekiScript block below this one.
var thisTemplate = wiki.inclusions()[-1];
if (!wiki.pagepermissions(thisTemplate.id, thisTemplate.author.id).unsafecontent)

<div style="color:red; width:75%; padding:5px; border:1px solid red;">
"WARNING: The page '"..thisTemplate.path.."' must be re-saved by a user with UNSAFECONTENT permission in order to work correctly. ";
 "See this" ;
" for more info.";

</div>;

Parameter Processing

// Errors array. There's lots of error checking to do, even if we can't possibly cover everything
var errors = [];
var fatal = false;

// Convenience variables for all the different series types
var line = "line";

http://www.highcharts.com/ref/#title
http://www.highcharts.com/ref/#plotOptions-series

var spline = "spline";
var area = "area";
var areaspline = "areaspline";
var column = "column";
var bar = "bar";
var pie = "pie";
var scatter = "scatter";
var raw = "raw";

// ====================
// Process Parameters
// ====================

// == Core Parameters ==

// type: what kind of chart (OPTIONAL; default "line")
var validTypes = [line,spline,area,areaspline,column,bar,pie,scatter,raw];
var type = $0 ?? $type ?? line;
if (type is str) let type = string.tolower(type);
if (!list.contains(validTypes, type)) {

let errors ..= [("TYPE parameter must be one of "; validTypes)];
}

// size: dimensions of chart area, in pixels (OPTIONAL; default 400x200)
var size = $1 ?? $size ?? [400, 200];
if (size is not list || size[0] is not num || size[1] is not num) {

let errors ..= ["SIZE parameter must be a list of two numbers"];
}

// data: chart data. This is always a list, with each list element a data series (REQUIRED)
var data = $2 ?? $data;
if (data is not list) {

let errors ..= ["FATAL: DATA parameter must be a list of data series"];
let fatal = true;

}

// options: all other options for the chart (OPTIONAL)
var options = $3 ?? $options ?? {};
if (options is not map) {

let errors ..= ["OPTIONS parameter must be a map"];
}

// data label formatter
var labelFormatter = $4 ?? $labelFormatter;
if (labelFormatter is not nil && labelFormatter is not str) {

let errors ..= ["LABELFORMATTER parameter must be a string"];
let labelFormatter = nil;

}

// tooltip formatter
var tooltipFormatter = $5 ?? $tooltipFormatter;
if (tooltipFormatter is not nil && tooltipFormatter is not str) {

let errors ..= ["TOOLTIPFORMATTER parameter must be a string"];
let tooltipFormatter = nil;

}

// debug
var debug = $6 ?? $debug ?? false;

// == Convenience Parameters ==

// animation
var animation = $animation ?? false;
if (animation is not bool) {

let errors ..= ["ANIMATION parameter must be bool"];
let animation = false;

}

// categories
var categories = $categories;
if (categories is not nil && categories is not list) {

let errors ..= ["CATEGORIES must be a list of category names"];
let categories = nil;

}

// stacking
var stacking = $stacking;
if (stacking is not nil && !list.contains(["normal", "percent"], stacking)) {

let errors ..= ["STACKING parameter must be either 'normal' or 'percent'"];
let stacking = nil;

}

// title
var title = $title;
if (title is not nil && title is not str) {

let errors ..= ["TITLE parameter must be a string"];
let title = nil;

}

// Construct the chart options

var chartOptions;
if (type == raw) {

let chartOptions = { chart: { renderTo: @holder }, series: data };
}
else {

// Chart: should be derived from user-specified options
var titleMargin = (#title ? 40 : 0);
var topMargin = titleMargin + (type == pie ? 0 : (titleMargin ? 40 : 50));
var bottomMargin = (type == pie ? 0 : 30);
var leftMargin = (type == pie ? 30 : 60);
var rightMargin = (type == pie ? 0 : 10);
var specChart = {

renderTo: @holder,
defaultSeriesType: type,
margin: [topMargin, rightMargin, bottomMargin, leftMargin],
borderRadius: 5

};

// Tooltip
var specTooltip = {};

// plotOptions: Very specific to chart type
var specPlotOptions = { series: { animation: animation, stacking: stacking } };
if (type == pie) let specPlotOptions ..= {

pie: {
allowPointSelect: true,
dataLabels: {

enabled: true,
color: "white"

},
center: [num.min(size[0],size[1]) / 2 + 10, "50%"]

}
};

// Credits: turn off "Highcharts" credit
var specCredits = { enabled: false };

// Title
var specTitle = {

text:title,
x: 25,
y: 30,
style: {

color: "black",
fontWeight: "bold",

fontSize: "18px"
}

};

// Legend
var specLegend =

type == pie ?
{

layout: "vertical",
borderRadius: 5,
align: "right",
verticalAlign: "middle",
x: -30,
y: 0

} :
{

layout: "horizontal",
borderRadius: 5,
verticalAlign: "top",
x: 25,
y: (#title ? 45 : 10)

};

// X axis
var specXaxis = {

categories : categories
};

// Y axis
var specYaxis = {
};

// Series
var specSeries =

type == pie ?
[{ data: data }] :
data;

// Assemble it all
let chartOptions = {

chart: specChart,
tooltip: specTooltip,
plotOptions: specPlotOptions,
credits: specCredits,
title: specTitle,

legend: specLegend,
xAxis: specXaxis,
yAxis: specYaxis,
series: specSeries

};
}

// Merge user-supplied options into chartOptions
foreach (var k:v in options) {

if (v is not map) let errors ..= ["OPTIONS arg: '"..k.."' element must be a map"];
let chartOptions ..= {

(k) : (chartOptions[k]??{}) .. { (kk):(vv is map ? chartOptions[k][kk]..vv : vv) foreach var kk:vv in v }
};

}

Output Generation

if (#errors) <div style="color:red">
 "Highcharts errors:" ;
 foreach (var e in errors) e ; ;

</div>;
else <html>
<head>

<script type="text/javascript" src=(thisTemplate.files["highcharts.js"].uri)></script>;
<script type="text/javascript">
" $(function() {

var options = "..json.emit(chartOptions)..";
";
// Add formatter(s) if necessary
if (labelFormatter is not nil) "

if (options.plotOptions.series.dataLabels == null) options.plotOptions.series.dataLabels = {};
options.plotOptions.series.dataLabels.formatter = function(){ "..labelFormatter .. " };

";

if (tooltipFormatter is not nil) "
if (options.tooltip == null) options.tooltip = {};
options.tooltip.formatter = function(){ "..tooltipFormatter.." };

";

// Resume
" var chart = new Highcharts.Chart(options);
});
" </script>;

</head>;
<body>

if (debug) <div style="color:red; border: 1px dotted red; padding:10px;">
 "Highcharts debug output" ;

<div>
"Here are the parameters passed to the ";
web.link("http://developer.mindtouch.com/User:neilw/Templates_and_Extensions/Highcharts_-_a_wrapper_for_the_Highcharts_JavaScript_graphing_package",

"template"); ":";
<div style="margin-left: 20px"> prettyPrint(args) </div>;
"Here is the generated argument map passed to "; web.link("http://www.highcharts.com/ref/", "Highcharts"); ":";
<div style="margin-left: 20px"> prettyPrint(chartOptions) </div>;
if (labelFormatter is not nil)

<div> "The custom datalabel formatter is: "; "function() { " .. labelFormatter .. " }" ; </div>;
if (tooltipFormatter is not nil)

<div> "The custom tooltip formatter is: "; "function() { " .. tooltipFormatter .. " }" ; </div>;
<div> "The resulting chart appears below this box." </div>;

</div>;
</div>;

<div id=(@holder) style=("width:"..size[0].."px; height:"..size[1].."px;")/>;

</body>;
</html>;

	Template:Highcharts
	Documentation
	Summary
	Version History
	Template Parameters

	Template Code
	Unsafecontent Permission Check
	Parameter Processing
	Output Generation

